Map-Reduce for Machine Learning on Multicore

نویسندگان

  • Cheng-Tao Chu
  • Sang Kyun Kim
  • Yi-An Lin
  • YuanYuan Yu
  • Gary R. Bradski
  • Andrew Y. Ng
  • Kunle Olukotun
چکیده

We are at the beginning of the multicore era. Computers will have increasingly many cores (processors), but there is still no good programming framework for these architectures, and thus no simple and unified way for machine learning to take advantage of the potential speed up. In this paper, we develop a broadly applicable parallel programming method, one that is easily applied to many different learning algorithms. Our work is in distinct contrast to the tradition in machine learning of designing (often ingenious) ways to speed up a single algorithm at a time. Specifically, we show that algorithms that fit the Statistical Query model [15] can be written in a certain “summation form,” which allows them to be easily parallelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to demonstrate this parallel speed up technique on a variety of learning algorithms including locally weighted linear regression (LWLR), k-means, logistic regression (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis (GDA), EM, and backpropagation (NN). Our experimental results show basically linear speedup with an increasing number of processors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicore Learning Algorithm

The focus of our term project is to apply the map-reduce principle to a variety of machine learning algorithms that are computationally expensive. Instead of using expensive computer clusters, we focus on implementing the framework on multi-core computer environment. On top of that, in order to apply the framework to a variety of modern machine learning algorithms, we focus on parallelize the s...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Encog: library of interchangeable machine learning models for Java and C#

This paper introduces the Encog library for Java and C#, a scalable, adaptable, multiplatform machine learning framework that was first released in 2008. Encog allows a variety of machine learning models to be applied to data sets using regression, classification, and clustering. Various supported machine learning models can be used interchangeably with minimal recoding. Encog uses efficient mu...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006